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Abstract: This two-part study focuses on the development and application of a coupled socioeconomic and engineering framework for
community-level seismic resiliency. Part I provided the coupled framework, including quantifying the effect that six socioeconomic and
demographic variables—age, ethnicity/race, gender, family structure, socioeconomic status, and the age and density of the built environ-
ment—have on four resilience metrics. This companion paper, Part II, presents and exemplifies the multiobjective optimization component of
the framework which is shown to identify the optimal set of seismic retrofit plans for a community’s woodframe building stock. In the
analysis, the largest difference in total financial loss occurred at a design basis earthquake (DBE) seismic intensity. The work highlights
the importance of including social, economic, and engineering factors in estimating losses; not including social factors in loss estimations
resulted in millions of dollars difference in projected economic loss, and a 182% underestimation in the number of morbidities for a DBE
event. The underestimations are exacerbated for a highly vulnerable population with an outdated or structurally deficient building stock. For
Los Angeles County, the total financial loss for the unretrofitted case was higher at multiple levels of seismic intensity than for the retrofitted
case, although there was no associated initial cost in the former case. When considering the reduced number of morbidities and lower total
financial loss associated with the retrofitted solution, it is clear that the initial cost of retrofitting is justified. DOI: 10.1061/(ASCE)NH.1527-
6996.0000230. © 2016 American Society of Civil Engineers.

Author keywords: Community resiliency; Socioeconomic model; Social vulnerability; Recovery time; Seismic retrofit; Woodframe
buildings.

Introduction

The present work addresses community disaster resilience by de-
signing a series of optimal seismic retrofit plans for the woodframe
building stock based on a community-level loss-estimation model
that considers socioeconomic and demographic (SED) variables
and building performance. The optimal community retrofit plans
are based on four resilience metrics, employed as objectives in
the optimization, namely the initial cost, potential economic loss,
the number of potential morbidities [i.e., injuries, fatalities, and
posttraumatic stress disorder (PTSD) diagnoses], and the time to
recovery. Ultimately, this work will allow decision makers, in
concert with engineers and other scientific experts, to develop com-
parisons between multiple resilience levels with the associated
risk-based performance criteria. See Part I (Sutley et al. 2016), the
companion paper, for the framework development and the analyti-
cal modeling of six SED variables—age, ethnicity/race, family
structure, gender, socioeconomic status, and the age and density
of the built environment—which was based on their influence
on the three morbidity rates. Part I concluded with an in-depth look
at the six variables through a sensitivity study using population data

for five communities (three California communities and two virtual
communities). These communities were selected and analyzed
based on the differences in their population makeup. Part II follows
with a summary of the multiobjective optimization used for iden-
tifying the optimal, or optimal set of, seismic retrofit plans for a
community’s woodframe building stock. A calibration procedure
is presented and tested against the reported losses from the 1994
Northridge earthquake. Lastly, several illustrative examples using
Los Angeles County, California, as the focal community are pre-
sented. The results from the Los Angeles County analyses highlight
the importance of including social, economic, demographic, and
engineering factors in estimating losses, planning, and recovery
efforts.

At this time, the framework is a fully developed application
ready to be applied. In its current form, analytical inputs and de-
cision-maker preferences can be incorporated, or adjusted, by any
person familiar with optimization algorithms and the MATLAB
coding language. Results from the optimization are interpreted
from fragility curves. A probability of nonexceedance may be se-
lected and used for extraction of strict values for each objective
and several complementary damage values, which map back to
individual community-level seismic retrofit plans. These strict val-
ues may be tabulated or plotted and provided to the decision
maker. If decision-maker preferences were not originally em-
ployed, the set of optimal seismic retrofit plans would be identi-
fied from the analysis. In this case, the set of objective values and
complementary damage values could be provided to the decision
maker. Then the decision maker could use their preferences to
compare between the objective values and select the best seismic
retrofit plan for their community. All coding for the genetic algo-
rithm and coupled framework was written in MATLAB by the first
author, and the built-in genetic algorithm toolbox in MATLAB was
not used.
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Multiobjective Optimization

As defined and established in Part I (Sutley et al. 2016), the SED
category factors are essential to the loss estimations computed
within the framework. They are what allow the framework, and sol-
ution, to be community-specific, rather than general for all com-
munities in the United States. The morbidity rates computed by
building damage and adjusted based on the SED category factors
are used to estimate three objectives: economic loss, the number of
morbidities, and the time to recovery. The multiobjective optimi-
zation uses these objectives, and additionally, the initial cost of the
seismic retrofit plan, to identify the optimal seismic retrofit plan for
the community given a specific earthquake scenario event.

To perform the optimization within the coupled socioeconomic
and engineering framework, a multiobjective genetic algorithm
(GA) was employed. Genetic algorithms are especially beneficial
in solving multiobjective optimization problems due to the popu-
lation of solutions generated with every iteration (Goldberg 1989).
In this work, the GA will produce the Pareto-optimal set of solu-
tions for the decision maker(s) by extracting diverse solutions gen-
erated with each iteration. The optimal solutions are identified by
the fitness function, which minimizes the objectives and follows
any constraints. The general procedure for the GA employed here
is shown in Fig. 1. The population is initialized using building sta-
tistics for each archetype based on census data for the community,

and the population initial fitness is computed. The population goes
through the selection, crossover, and mutation operators and the
population fitness is recalculated. If the number of generations
(iterations) is less than the maximum set number of generations, a
new generation is spawned repeating the crossover, mutation and
selection operators until the solution converges or meets the speci-
fied maximum number of generations.

The objectives modeled, as presented in Sutley et al. (2016), for
measuring community-level seismic resilience include initial cost,
economic loss, number of morbidities, and time to recovery. The
first objective, initial cost, introduces conflict between the latter
three objectives assisting the GA in producing more diverse solu-
tions. That is, a seismic retrofit plan that has minimal initial cost
intuitively will have a higher economic loss, higher number of mor-
bidities, and a longer recovery time since the buildings, or retrofits,
will be cheaper. In this study, the GA was designed to develop the
Pareto-optimal set of solutions for the decision maker(s) by produc-
ing and extracting diverse solutions throughout the analysis. The
Pareto-optimal set is defined as the set of solutions which represent
the optimal trade-offs between the objectives. A Pareto-optimal sol-
ution may be optimal for one or more objectives, but is not optimal
for all objectives. Table 1 provides the genetic algorithm terminol-
ogy and how each term was specifically modeled or defined for the
current study.

In this study, the community being analyzed was modeled by its
woodframe building stock and represented as a numeric string. The
string is a single seismic retrofit plan for the woodframe building
stock, where the woodframe building stock was modeled as a col-
lection of archetypes. The value of each characteristic in the string
represents the quantity of each different archetype, present in
the community. Within a community, there are multiple types of
woodframe structures designed by various codes or provisions.
Therefore, to improve the accuracy, a representative range of arche-
types is needed, such as multiple single-family dwellings, multiple
multifamily dwellings, and multiple low-rise commercial build-
ings, were designed at various periods in time to model the variety
in the woodframe building stock of a community.

Fitness Formulation

In genetic algorithms, the fitness function allows for the optimal
solution(s), to be identified. Recall, the objectives and other dam-
age measures are interpreted from fragility functions. In this study,
the fitness was computed by using the 50th percentile values for
each of the objectives to provide a strict number for comparison.
The 50th percentile values were chosen as an example; the user,
however, could select any percentile value of interest. The 50th
percentile values of the objectives, oi, were normalized by the
minimum population value of each respective objective. Once

Fig. 1. Generalized genetic algorithm procedure

Table 1. Comparison of Terminology

Genetic algorithm Current study

String; individual; the string is n
concatenated characteristics

The community being studied, modeled by the woodframe building stock consisting of n archetypes; this is a
seismic retrofit plan for the woodframe building stock; a single solution

Population; a collection of
“individuals”

Multiple collections of the woodframe building stock differing by the number of each archetype present in the
study-community

Feature; characteristic A single building archetype
Feature value; characteristic value The number of that building archetype present in the study-community
Crossover Executed using double-point crossover
Selection; survival of the fittest Executed using tournament selection
Mutation Executed using single-point mutation on randomly selected gene
Fitness Normalized objective values (initial cost, economic loss, number of morbidities, recovery time)
Iteration Another succession following the selection-crossover-mutation operators

© ASCE 04016015-2 Nat. Hazards Rev.
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normalized, the objectives were weighted, wi, and summed to-
gether. The fitness function may be expressed as

fitness ¼ w1 · o1 þ w2 · o2 þ w3 · o3 þ w4 · o4 ð1Þ
where o1 = normalized initial cost; o2 = normalized economic loss;
o3 = normalized number of morbidities; and o4 = normalized time
to recovery. If decision-maker preferences were to be incorporated
in the GA, this would occur through the weights, otherwise these
weights would equate to unity. The lower the fitness value, the bet-
ter the seismic retrofit plan, and the more likely for it to be dupli-
cated in future iterations; this is the premise of a GA.

Selection, Crossover, and Mutation

There are three major substeps in any genetic algorithm: selection,
crossover, and mutation. The selection process uses the computed
fitness to determine which seismic retrofit plans will move on to the
next iteration. The tournament selection procedure is commonly
used in optimization problems and was employed here.

A crossover routine randomly exchanges archetype quantities
between randomly selected seismic retrofit plans. A double point
crossover was employed here due to the characteristic makeup of
the seismic retrofit plans. The two crossover sites were set at the
same locations for each seismic retrofit plan entering into the cross-
over operator, and separated the outdated archetype designs from
the new and state-of-the-art archetype designs and retrofits. This
way, the GA was able improve the community resilience by in-
creasing the number of retrofitted buildings through decreasing the
number of structurally deficient buildings.

The mutation operator changes one or more archetype quantities
within a selected seismic retrofit solution. In this study, a single-
point mutation site was used, and randomly selected as any of the
structurally deficient archetypes.

Constraints and Penalty Functions

There were multiple constraints and penalty functions imposed in
the GA used here. A constraint requires a solution to follow it. A
solution may not meet the penalty function, and if it does not, then
its fitness is altered in a negative way. The constraints imposed in
this genetic algorithm were all based on controlling the number of
each archetype, the total number of each floor plan over all designs,
and the total number of all archetypes in a single solution.

Penalty functions may be incorporated into a genetic algorithm
as a way to impose checks on the solutions so as to encourage the
solution in a more optimal direction. There were three penalty func-
tions imposed in the genetic algorithm. Two of the three penalty
functions were imposed based on the budget input by the user (de-
cision maker), and the third penalty function was for further con-
trolling the total number of archetypes in the community. The
values used for the budget and within the penalty functions are all
hypothetical at this point, but could be set by the decision maker in
a real world application. In each case, if the check was not met by
the solution, the corresponding fitness was penalized by being
multiplied by a factor of two. The first penalty function was for
directing the initial cost of the optimal solution to be less than the
budget set by the user. The first penalty function for limiting the
initial cost may be expressed as

IF O1;j > budget

THEN fitnessj ¼ 2 · fitnessj ð2Þ
where O1 = initial cost of the jth individual in the current
generation.

The second penalty function was for directing the total eco-
nomic loss of the optimal solution to be less than 10 times the
budget, for example, to be set by the user. The second penalty func-
tion for limiting the total economic loss may be expressed as

IF O2;j > 10 · budget

THEN fitnessj ¼ 2 × fitnessj ð3Þ
where O2 = economic loss of the jth individual in the current gen-
eration.

The last penalty function was imposed for controlling the total
number of archetypes in the community to equal 1,00,000. The
third penalty function may be expressed as

IF
X37
arch¼1

narch;j ≠ 100,000

THEN fitnessj ¼ 2 × fitnessj ð4Þ
The constraints were imposed following the crossover and mu-

tation operators, and the penalty functions were imposed prior to
the selection operator. The factor of two was s chosen after several
trial runs identified it to as effective at controlling the solutions to
follow the penalty functions.

Illustrative Examples in Los Angeles County,
California

In this section, the optimization algorithm and community resil-
ience framework are applied to several illustrative examples over
a subset of Los Angeles County. Prior to the illustrative examples,
the framework was calibrated to the reported morbidity rates from
the United States Geological Survey (USGS) Shakeout Scenario
(Jones et al. 2008).

Framework Calibration

The USGS Shakeout Scenario looked at a much larger geographic
area consisting of approximately 1 million people. In the present
work, the framework is applied to a subset of 100,000 buildings,
equating to approximately 1 million people. The morbidity rates
predicted in the Shakeout Scenario for a very large earthquake were
approximately matched at a spectral acceleration of 2.5g, corre-
sponding to a maximum considered earthquake (MCE) seismic
hazard, which would be caused by a ground shaking intensity ap-
proximately equal to the worst section of what was examined in the
Shakeout Scenario. At 2.5g spectral acceleration, the framework
was applied using the Los Angeles County population with the
SED category factors set to unity, since the Shakeout Scenario did
not have such factors incorporated within it, and therefore neither
did the Shakeout Scenario’s predicted losses.

Once a satisfactory level of calibration was achieved for the
morbidity rates, the framework was reapplied to a different scenario
earthquake, namely the 1994 Northridge earthquake. The estimated
morbidities were determined using the SED category factors com-
puted using similar data in Table 2, with Eqs. (11) and (12) in
Sutley et al. (2016) for Los Angeles County to compare the loss
estimates with the reported losses from the 1994 Northridge earth-
quake. The 1994 Northridge earthquake was the last major earth-
quake in terms of economic loss to have occurred in the United
States and thus selected for the calibration check. The Los Angeles
County SED category factors were used when comparing to the
reported losses from the 1994 Northridge event because these were
real losses measured from the Los Angeles community. These
losses thus could be more accurately matched by the framework

© ASCE 04016015-3 Nat. Hazards Rev.
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by using the 1990 census data to compute SED category factors for
adjusting the morbidity rates. The data in Table 2 is from the 2010
U.S. Census (2010), and was used in the community-level optimi-
zations to provide insight into the present day situation in Los
Angeles County. The 1990 census data are not presented here
for conciseness.

Most woodframe residential structures have fundamental peri-
ods near 0.2 s. A range of peak ground acceleration (PGA) values
(less than 0.3g and up to greater than 0.6g) were recorded from the
1994 Northridge ground motion. The PGA for this study was taken
as 0.5g resulting in an average spectral acceleration of 1.1g for
buildings with a fundamental period of 0.2 s. Shierle (2003) con-
ducted an extensive retrospective investigation on the damage
to woodframe structures caused by the 1994 Northridge earthquake
as part of the Consortium of Universities for Research in Earth-
quake Engineering (CUREE)-Caltech Woodframe Project. The
project reported various loss estimations, including the subassem-
bly repair costs and repair times that are used in the present study
(Reitherman and Cobeen 2003). CUREE Publication No. W-09 re-
ported that around half of the $40 billion in property loss caused by
the quake was due to damage to woodframe buildings. Therefore,
the economic loss from the framework should be approximately,
but less than, $20 billion.

Applying the framework to the Los Angeles County population
at 1.1g spectral acceleration at the same occupancy rates that
were expected to have been experienced during the Northridge
earthquake (peak occupancy for residential structures due to time
of day), the 50th percentile value for the economic loss was ap-
proximately $16 billion, which was deemed close enough to the
Northridge earthquake estimate to prove the framework’s accuracy
in predicting economic loss. Additionally, the CUREE publication
reported 48,000 housing units were uninhabitable, therefore the to-
tal number of archetypes being classified as temporarily uninhab-
itable or collapsed (i.e., Damage States 4 and 5, respectively) were
summed and calibrated to equal approximately 48,000.

The calibrations discussed above were achieved by multiplying
the resulting distributions for the estimated losses by factors to
achieve the reported values. The expression used for computing
the number of morbidities was provided in the companion paper.
Rearranging that expression and incorporating the calibration fac-
tors, the expression for computing the number of morbidities
becomes

O3 ¼ Finj ·
Xnds
ds¼1

��X4
is¼1

MRis;ds

�
·
Xnarch
i¼1

ðni;ds · occiÞ
�

þ Ffat ·
Xnds
ds¼1

�
MRis5;ds ·

Xnarch
i¼1

ðni;ds · occiÞ
�

þ FPTSD ·
Xnds
ds¼1

�
MRpr;ds ·

Xnarch
i¼1

ðni;ds · occiÞ
�

ð5Þ

where Finj, Ffat, and FPTSD = calibration factors for the injury, fatal-
ity, and PTSD diagnoses counts, respectively. The calibration fac-
tors were determined to be 0.5 in all cases, indicating that the
originally predicted morbidity counts were twice as high as the cal-
ibration studies which could have been caused by the limitation of
applying a constant seismic intensity to all buildings in the analysis,
rather than spatially distributing the seismic intensity. MRis;ds,
MRis5;ds, and MRpr;ds = morbidity rates for injury severity level
is, fatality rate is5, and PTSD diagnosis rate pr in damage state ds,
respectively; ni;ds = number of archetypes i in damage state ds; and
occi = occupancy of archetype i.

Building Archetypes

Building performance is measured by an engineering demand
parameter (interstory drift), which maps to five damage states, as
discussed in Sutley et al. (2016). The five damage states were also
mapped to the morbidity rates, and thus provided the connection for
the SED and engineering systems. To model the variety in an as-
sumed existing residential building stock, and for obtaining the
building performance in the illustrative examples presented in this
study, 37 woodframe building archetypes were modeled (Table 3).
These 37 archetypes consisted of 7 diverse floor plans: two one-
story single-family dwellings (SFD) (one with and one without an
attached garage), two two-story SFD (one small and one large), one
two-story multifamily dwelling (MFD), and two soft-story build-
ings (one three-story MFD and one four-story office building).

These seven floor plans were designed to five different seis-
mic provisions: the 1959 Structural Engineering Association of
California (SEAOC) Blue Book, 1978 National Earthquake Hazard
Reduction Program (NEHRP), American Society of Civil Engi-
neers (ASCE) 7-2005 Equivalent Lateral Force Procedure, two
performance-based seismic retrofits (PBSR) using the simplified
direct displacement design procedure (SDDD) to two limit states
[i.e., immediate occupancy (IO) and life safety (LS)], and addition-
ally, the two soft-story buildings were retrofitted following the
Federal Emergency Management Agency (FEMA 2012) P-807
procedure. This set of 37 archetypes was selected in an effort to
accurately model the existing building stock in the Los Angeles
County, California area, which would include older and newer
designed buildings, where older was taken as pre-1994 Northridge
earthquake construction, and newer was taken as post-1994
Northridge earthquake construction in this study.

There were several constants for the case studies presented here.
These included the initial building inventory, provided in Table 3.
The framework assumes that all buildings within the community
are at an equal distance from the epicenter of the earthquake,

Table 2. Community Input Data

Variable
2010 Los Angeles
County Input Values

Total population size 9,818,605
Mean annual income $81,729
Mean household size 2.98
Percentage of households with children 37.2
Age

Child (0–9 years old) 13.1%
Adolescent (10–19 years old) 14.6%
Young adult (20–29 years old) 15.4%
Middle-aged adult (30–45 years old) 21.9%
Older adult (46–64 years old) 24.2%
Elder (65+ years old) 10.9%

Ethnicity/race
White, non-Hispanic 27.8%
Non-White, non-Hispanic 72.2%

Family structure
Single 32.3%
Partnered 67.7%
Person <18 years old in household 37.2%

Gender
Female 50.7%
Male 49.3%

Socioeconomic status
Low 27.6%
Moderate 43.4%
Upper 29.0%

© ASCE 04016015-4 Nat. Hazards Rev.
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therefore a subset of the population size was used, rather than the
entire population for Los Angeles County as mentioned earlier. The
subset population size was set as 100,000 buildings. The distribu-
tion of the 100,000 buildings shown in Table 3 was modeled after
the building inventory of Los Angeles County based on 2010 U.S.
Census data. The order of buildings listed in Table 3 is the order in
which the archetypes appeared in the GA’s string. For the buildings
likely designed to a modern code, it was not evident from the cen-
sus data which seismic provision was used in the design. Therefore,
the quantity of modern buildings was evenly distributed over the
last 23 archetypes in the string for each respective floor plan.
Subsequently the initial percentages for the subcategories of the
built environment were constant for all case studies. The genetic
algorithm and optimization inputs were held constant for all exam-
ples. The probability of crossover was set to 0.85, the probability of
mutation was set to 0.10, the number of seismic retrofit plans (indi-
viduals) in the population per generation was set to 50, and the
maximum number of generations was set to 100, selected based
on a preliminary sensitivity study not presented here, and limita-
tions in the computational capacity. A collapse limit of 10% inter-
story drift was employed on all archetypes. Peak interstory drift
values for each archetype were obtained from nonlinear time his-
tory analyses conducted prior to the case study. The peak interstory
drift values used here were extracted at 50% probability of nonex-
ceedance. The objective weights in Eq. (1) were set to unity in all

cases so that the decision maker(s) could employ preferences at
the end.

Community-Level Optimization of Los Angeles County
at a MCE Seismic Hazard Using Coupled Framework

The community-level optimization was conducted using the
coupled-framework at a MCE seismic hazard. The resulting 50th
percentile values for the four objectives are plotted in the following
figures. Each plotted point on the individual figures map back to a
community-level seismic retrofit plan. The circles highlight the
Pareto-optimal solutions in each figure. Recall, the Pareto-optimal
surface represents the optimal trade-off with respect to the two ob-
jectives being compared, and therefore is not identical in the differ-
ent figures. Fig. 2 provides the relationship between the estimated
economic loss and the associated initial cost of the solutions. There
is a large cluster of solutions which demonstrated a trend indicating
that the higher the initial cost, the lower the economic loss. Three
solutions formed the Pareto-optimal surface for these two objec-
tives, although not completely visible from the figure.

Fig. 3 illustrates the relationship between the estimated number
of morbidities and the associated initial cost of the solutions. In this
case, the same three solutions were identified on the Pareto-optimal
surface to provide the optimal trade-offs between the number of
morbidities and the initial cost. Similarly to Fig. 2, a trend revealed

Table 3. Description of Building Stock

Seismic provision Floor plan Number of stories Area m2 ( ft2) Archetype Percentage of 100,000 in initial population

1959 Blue Book 1 1 111.5 (1,200) 1 9.59
2 2 261.9 (2,820) 2 9.59
3 2 674.5 (7,260) 3 6.90
4 3 983.5 (10,586) 4 10.43
5 1 131 (1,410) 5 9.59
6 2 137.1 (1,476) 6 9.59
7 4 1,912.3 (20,584) 7 20.22

1978 NEHRP 1 1 111.5 (1,200) 8 2.26
2 2 261.9 (2,820) 9 2.26
3 2 674.5 (7,260) 10 1.63
4 3 983.5 (10,586) 11 2.46
5 1 131 (1,410) 12 2.26
6 2 137.1 (1,476) 13 2.26
7 4 1,912.3 (20,584) 14 4.77

ASCE7-05 1 1 111.5 (1,200) 15 0.26
2 2 261.9 (2,820) 16 0.26
3 2 674.5 (7,260) 17 0.19
4 3 983.5 (10,586) 18 0.21
5 1 131 (1,410) 19 0.26
6 2 137.1 (1,476) 20 0.26
7 4 1,912.3 (20,584) 21 0.41

SDDD-IO 1 1 111.5 (1,200) 22 0.26
2 2 261.9 (2,820) 23 0.26
3 2 674.5 (7,260) 24 0.19
4 3 983.5 (10,586) 25 0.21
5 1 131 (1,410) 26 0.26
6 2 137.1 (1,476) 27 0.26
7 4 1,912.3 (20,584) 28 0.41

SDDD-LS 1 1 111.5 (1,200) 29 0.26
2 2 261.9 (2,820) 30 0.26
3 2 674.5 (7,260) 31 0.19
4 3 983.5 (10,586) 32 0.21
5 1 131 (1,410) 33 0.26
6 2 137.1 (1,476) 34 0.26
7 4 1,912.3 (20,584) 35 0.41

FEMA P-807 4 3 983.5 (10,586) 36 0.21
7 4 1,912.3 (20,584) 37 0.41
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that the higher the initial cost, the fewer estimated number of
morbidities.

Fig. 4 provides the relationship between the estimated recovery
time and the associated initial cost of the solutions, where only a
single optimal solution was identified. The results in Fig. 4 dem-
onstrated that the higher the initial cost, the shorter the time to
recovery.

The relationship between the estimated economic loss and the
recovery time of the solutions is shown in Fig. 5, with two optimal
solutions identified. Fig. 6 shows the relationship between the
estimated number of morbidities and the recovery time of the so-
lutions, with the same two optimal solutions identified as in Fig. 5.
Similarly in Figs. 5 and 6, trends showed that the shorter the re-
covery time, the lower the economic loss and the fewer morbidities.

Fig. 7 illustrates the relationship between the estimated number
of morbidities and the associated economic loss of the solutions. In
this case, one solution was identified to form the Pareto-optimal
surface. Here it was shown that there was a direct correlation be-
tween the number of morbidities and economic loss, and as one
increased or decreased, so did the other objective.

From Figs. 2–7, there were three unique solutions identified to
form the Pareto-optimal set of solutions for all four objectives. In all

Fig. 2. 50th percentile values for economic loss versus Initial cost for
Los Angeles County at MCE with Pareto-optimal surface labeled

Fig. 3. 50th percentile values for number of morbidities versus initial
cost for Los Angeles County at MCE with Pareto-optimal surface
labeled

Fig. 4. 50th percentile values for recovery time versus initial cost for
Los Angeles County at MCE with Pareto-optimal surface labeled

Fig. 5. 50th percentile values for economic loss versus recovery time
for Los Angeles County at MCE with Pareto-optimal surface labeled

Fig. 6. 50th percentile values for number of morbidities versus recov-
ery time for Los Angeles County at MCE with Pareto-optimal surface
labeled

© ASCE 04016015-6 Nat. Hazards Rev.
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cases, the various objectives followed logical and hypothesized
trends. In the figures that compared an objective versus the time to
recovery, a vertical lower limit is shown at approximately 52 weeks,
the recovery time set for PTSD in Sutley et al. (2016). This vertical
lower limit suggests that at least one person in the exposed popu-
lation would be diagnosed with PTSD, and therefore the recovery
time could not be less than one year. Upon further inspection, the
estimated repair time might be shorter than 52 weeks for some so-
lutions. However, the detailed repair time results were not provided
in addition to the recovery time results. It could also be the case that
the recovery time could be less than 52 weeks. For example, a very
small earthquake could have caused minimal building damage, but
not PTSD diagnoses. In this case, the recovery time would have
been less than 52 weeks. Additional examples demonstrating and
providing these details were beyond the direct goals of demonstrat-
ing the framework, and thus not included.

A second analysis was conducted using the framework with the
SED variables set to unity. Conducting the optimization twice,
demonstrates the importance of including both sectors in loss es-
timations, planning, and recovery efforts. The results from both
multiobjective optimizations were used to select five optimal solu-
tions for further examination. In both optimizations, similar trends
were developed when comparing the various objectives. Although
only three solutions were identified to form the Pareto-optimal set
of solutions in the multiobjective optimization example, a larger set
could be provided to a decision maker and other nonoptimal solu-
tions could be selected as well. It should be noted that using a pop-
ulation size of 50 seismic retrofit plans to compare, and a maximum
number of 100 iterations will not generate every possible solution.
These input parameters were felt to provide an extensive set of
solutions for the illustrative examples.

Analyzing the Pareto-Optimal Surface Based on MCE
Seismic Hazard

Following the multiobjective optimization, two solutions were
extracted from each analysis (Los Angeles County values and unit
values of SED variables) for further investigation. Using two so-
lutions from each analysis, rather than the three identified optimal,
was elected for brevity. In each case, one of the selected solutions
provided the optimal trade-off for the number of morbidities and
recovery time. The second selected solution provided the optimal
trade-off for the initial cost and economic loss. The five solutions

selected for further investigation are provided in Table 4. The fifth
solution, and the first one listed in Table 4, was the initial popu-
lation used in both of the above analyses. Recall that the two soft-
story buildings A4 and A7 were additionally retrofitted following
the FEMA P-807 (FEMA 2012) guidelines, and appear at the bot-
tom of Table 4. These five solutions are used for conducting the
remaining community-level case studies.

Table 4 shows that the four optimal solutions attempted to retro-
fit all of the three-story and four-story buildings designed by the
1959 Blue Book (i.e., A4 and A7) demonstrating that these must
have represented the most vulnerable structures with potential of
causing harm to the population. The algorithm did not allow the
counts to reduce to zero to prohibit numerical instabilities in the
computations. The two optimal solutions obtained from the opti-
mization using the coupled framework (Solutions 2 and 3) at-
tempted to retrofit most of the outdated buildings, and overall
retrofitted many more buildings than the optimal solutions obtained
from the optimization which set the SED variables to unity.

Illustration of the Community-Level Framework

In this section, the five solutions provided in Table 4 were analyzed
more closely. In all cases, these are real solutions which the search

Fig. 7. 50th percentile values for number of morbidities versus
economic loss for Los Angeles County at MCE with Pareto-optimal
surface labeled

Table 4. Initial Population and the Pareto-Optimal Set of Solutions
Considering a MCE Seismic Hazard for Los Angeles County

Solution A1 A2 A3 A4 A5 A6 A7

Alleles for 1959 Blue Book designs
1 9,586 9,586 6,898 10,432 9,586 9,586 20,220
2 6,791 1 1 1 1 1 1
3 6,624 1 23 1 44 1 1
4 1 8790 1 1 8790 1 1
5 1 8242 1 1 8242 1 1

Alleles for the 1978 NEHRP designs
1 2,261 2,261 1,627 2,460 2,261 2,261 4,768
2 1 1 1 1 1 1 1,974
3 1 1 1 1 1 1 1,806
4 1,464 1 830 1,664 1,464 1 3,972
5 1 1 823 1,116 917 1 3,425

Alleles for the 2005 ASCE-7 designs
1 261 261 188 213 261 261 414
2 1,509 1,509 1,509 2,172 2,404 1,825 2,509
3 4,287 3,061 3,061 3,061 3,264 3,061 3,061
4 2,949 250 2,684 1,207 250 1,608 250
5 3,645 486 3,032 958 487 516 2,137

Alleles for the SDDD-IO retrofit designs
1 261 261 188 213 261 261 414
2 5,559 6,687 4,899 6,120 6,041 4,999 3,292
3 5,054 6,360 4,595 4,758 4,302 3,220 3,061
4 4,220 4,507 2,672 4,662 4,384 5,100 5,682
5 4,220 4,507 2,739 4,914 4,446 4,654 6,797

Alleles for the SDDD-LS retrofit designs
1 261 261 188 213 261 261 414
2 5,559 6,687 4,899 6,120 6,041 4,999 3,292
3 5,054 6,360 4,595 4,758 4,302 3,220 3,061
4 4,221 4,507 2,672 4,662 4,384 5,100 5,682
5 4,221 4,070 2,739 4,914 4,446 4,548 6,684

Alleles for the FEMA P-807 retrofit designs
1 — — — 213 — — 413
2 — — — 2,171 — — 1,509
3 — — — 3,061 — — 3,061
4 — — — 1,207 — — 250
5 — — — 958 — — 2,137

© ASCE 04016015-7 Nat. Hazards Rev.
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algorithm found. The framework was applied at three seismic inten-
sities. Rather than generating random solutions, the five selected
solutions were input so that their associated losses could be ob-
tained. (This method of execution is available to decision makers
for when they have identified their optimal, or optimal set of, seis-
mic retrofit plans, but would like to investigate the associated losses
at multiple scenario events.) The three seismic intensities selected
for study here are: 33, 66, and 100% of MCE (Sa ¼ 0.7, 1.6, and
2.5g, respectively) for Los Angeles County. As mentioned above,
and discussed in Part I (Sutley et al. 2016), the seismic intensity
was not modeled to vary spatially across the building archetypes.
Although this is seen as a limitation to the study, it was not believed
to compromise the main objectives.

Fig. 8 provides the resulting fragility curves at DBE (Sa ¼ 1.6g)
for economic loss conditioned on initial cost. The curves in
Fig. 8(a) are the estimated loss distributions using the Los Angeles
County SED variables, and those in Fig. 8(b) are with unit SED
variables. The economic loss distribution was obtained through the
computational development in Sutley et al. (2016).

The probabilistic distribution of recovery time was identical for
the two cases. As shown, at the MCE intensity, the recovery time
was controlled by building repair time which was not computation-
ally modeled with the SED variables incorporated, and therefore
gives identical recovery times due to morbidity, and was set at
52 weeks. Therefore, the recovery times were determined to be
the same distributions for the two analyses independent of the
SED variables’ values. The 50th and 90th percentile values were
extracted for all five solutions at the three seismic intensities. These
values are tabulated for the economic loss fragility in Table 5, and
for the number of morbidities fragility in Table 6. The arrows plot-
ted within Fig. 8 demonstrate how the 50th and 90th percentile
values were obtained. The abscissa value corresponding to the or-
dinate value of 0.5 and 0.9 is taken as the 50th and 90th percentile
value for economic loss given initial cost for each respective sol-
ution. As seen in Fig. 8 and shown in Table 5, the estimated losses
were less when the SED variables were set to unity for each respec-
tive solution. This held true for the five solutions at each of the three
intensity measures for the economic loss and number of morbidities

Fig. 8. Probability of nonexceedance for economic loss given a specific initial cost at (2=3) MCE: (a) Los Angeles County SED variables; (b) unit
SED variables

Table 5. 50th and 90th Percentile Values for Economic Loss

Solution

1=3 MCE 2=3 MCE MCE

50th 90th 50th 90th 50th 90th

S1 913 × 109 1.19 × 1010 5.58 × 1010 7.47 × 1010 1.49 × 1011 2.01 × 1011

S1 (unit) 9.03 × 109 1.18 × 1010 5.47 × 1010 7.32 × 1010 1.45 × 1011 1.97 × 1011

S2 4.59 × 109 5.92 × 109 1.38 × 1010 1.78 × 1010 5.51 × 1010 7.31 × 1010

S2 (unit) 4.56 × 109 5.88 × 109 1.35 × 1010 1.76 × 1010 5.4 × 1010 7.17 × 1010

S3 5.64 × 109 9.13 × 109 1.79 × 1010 2.33 × 1010 6.9 × 1010 9.18 × 1010

S3 (unit) 5.61 × 109 7.24 × 109 1.77 × 1010 2.3 × 1010 6.79 × 1010 9.03 × 1010

S4 4.46 × 109 5.73 × 109 1.64 × 1010 2.13 × 1010 6.02 × 1010 7.98 × 1010

S4 (unit) 4.43 × 109 5.69 × 109 1.62 × 1010 2.1 × 1010 5.91 × 1010 7.85 × 1010

S5 3.81 × 109 4.89 × 109 1.3 × 1010 1.68 × 1010 4.76 × 1010 6.29 × 1010

S5 (unit) 3.79 × 109 4.86 × 109 1.28 × 1010 1.65 × 1010 4.67 × 1010 6.17 × 1010

© ASCE 04016015-8 Nat. Hazards Rev.
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loss estimates. The initial population is S1; it had the highest esti-
mated losses for all three seismic intensities independent of the
SED variables’ values.

To further demonstrate the significance of including the commu-
nity-specific SED variables in loss estimation and mitigation
planning, the 50th percentile values were extracted from the eco-
nomic loss and number of morbidities fragilities presented above
for Solutions S1 and S2 as an example. S1 was selected because it
is the initial population, and S2 was selected to represent one of the
optimal solutions. The 50th percentile values were not further in-
vestigated for the recovery time since these values matched for
the two analyses. The 50th percentile values are plotted in Figs. 9
and 10. These figures show that when comparing the estimated
losses between the community-specific Los Angeles County SED
variables versus setting the SED variables to unity, the difference
between values increases as the seismic intensity increases. This
finding is also evident from the table inserted into each figure.
The percent increase in S1 loss estimations was more significant
than the percent increase in S2 loss estimations for both economic
loss and the number of morbidities. That is to say, when computing
loss estimations for a less resilient building stock, it is even more
imperative to include community-specific SED variables—and
considerations of the most socially vulnerable—into the loss esti-
mations. Not including SED variables leads to large underestima-
tions in losses, and this is exacerbated for a highly vulnerable
population with an outdated or structurally deficient building stock.

In Fig. 10, the percent differences for the number of morbidities
are large at all seismic intensities for both solutions. Recall that the

economic loss is a compilation of the repair costs, and the morbid-
ities costs. Therefore, if the highest contributor to economic loss is
repair costs (say for the initial population where the building stock
is mostly old and structurally deficient), then one would expect
to see a smaller difference in economic loss values when using
community-specific versus unit SED variables. The number of
morbidities, on the other hand, was completely based upon the
morbidities; therefore independent of the building stock design
level, one would expect to see major differences in the morbidity
count when including the community-specific SED variables.

The percent differences between the economic losses deter-
mined when the SED variables are community-specific versus set
to unity are provided in the table within Fig. 9, and may seem very
small ranging from 0.53 to 2.07%, respectively. However, these
small percentages equate to large monetary values (up to $4 billion
at MCE). In fact, the small percent differences correspond to mil-
lions or even billions of dollars, depending on the earthquake in-
tensity. Furthermore, if the 50th percentile values for economic loss
are extracted from Fig. 8, and added to the initial cost for Solutions
S1 and S2, then the total financial loss may be investigated. Table 7
provides these computations, along with the percent difference be-
tween the total financial losses for S1 and S2. In all cases, the initial
population (S1) has a higher estimated total financial loss. This
means that although there is no associated initial cost, the estimated
economic loss, even for a small earthquake (i.e., 1=3 MCE), is
greater than the total financial loss for the retrofitted case. Looking
at the change in percent difference for each seismic intensity, the

Table 6. 50th and 90th Percentile Values for the Number of Morbidities

Solution

1=3 MCE 2=3 MCE MCE

50th 90th 50th 90th 50th 90th

S1 3,570 3,920 3.52 × 104 3.98 × 104 1.46 × 105 1.7 × 105

S1 (unit) 1,440 1,570 1.25 × 104 1.39 × 104 5.3 × 104 6.04 × 104

S2 1,370 1,500 4,740 5,190 4.6 × 104 5.24 × 104

S2 (unit) 684 741 1,920 2,080 1.61 × 104 1.8 × 104

S3 1,570 1,710 5,860 6,430 5.12 × 104 5.84 × 104

S3 (unit) 803 872 2,330 2,520 1.83 × 104 2.05 × 104

S4 1,470 1,710 5,690 6,230 5.25 × 104 5.99 × 104

S4 (unit) 737 800 2,370 2,570 1.9 × 104 2.14 × 104

S5 1,210 1,320 4,660 5,090 4.17 × 104 4.74 × 104

S5 (unit) 642 696 1,920 2,080 1.48 × 104 1.65 × 104

Fig. 9. 50th percentile economic loss versus seismic intensity

Fig. 10. 50th percentile number of morbidities versus seismic intensity

Table 7. Comparison of Total Financial Loss for Three Case Studies

Solutiona Measure

Seismic intensity

1=3 MCE 2=3 MCE MCE

S1 Initial cost ($) 0 0 0
Economic loss ($) 9.12 × 109 5.58 × 1010 1.48 × 1011

Sum ($) 9.12 × 109 5.58 × 1010 1.48 × 1011

S2 Initial cost ($) 5.32 × 108 5.32 × 108 5.32 × 108

Economic loss ($) 3.81 × 109 1.30 × 1010 4.76 × 1010

Sum ($) 4.34 × 109 1.35 × 1010 4.81 × 1010

Difference in total
financial loss (%)

52.4 75.7 67.5

aSolution was obtained by using the coupled framework with Los Angeles
County SED variables.
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most significant difference occurs at 2=3 MCE (i.e., DBE) with
approximately 76% difference. This has significant implications
because DBE is the seismic intensity that could very well be ex-
pected to occur in Los Angeles County or other areas along the
San Andreas Fault. When considering the reduced number of
morbidities associated with the retrofitted solutions, it is clear that
retrofitting is a better solution, even if there is a higher associated
initial cost.

Breaking down the economic loss model further shows it is the
sum of the repair costs, relocation costs, contents damage, cost due
to injury, cost due to fatality, cost due to medical treatment of
PTSD, and the downtime due to PTSD. All of these values are in-
dependent of the community’s economic status except the last mea-
sure, downtime due to PTSD. The downtime due to PTSD was
computed using the mean annual income of the community. Taking
this one step further, the estimated number of work hours lost in one
year due to employees exhibiting absenteeism and/or presenteeism
while suffering from posttraumatic stress disorder may be deter-
mined for the current (i.e., initial) population. The 50th percentile
value for this measure at DBE, using Eqs. (27) and (29) in Sutley
et al. (2016), was computed as 7,200 h for Los Angeles County.
Dividing the mean annual income by 260 work days per year at
8 h per day to determine an equivalent hourly rate, the total dollars
lost due to downtime, but not medical costs, caused by persons hav-
ing PTSD was computed as $74 million for Los Angeles County
during the first year following the earthquake.

Discussion and Conclusions

This study introduced a multiobjective optimization problem that
was solved via genetic algorithm using a coupled socioeconomic
and engineering framework designed to improve community
resilience by identifying optimal seismic retrofit plans for the
woodframe building stock. The retrofit plans may be provided to
decision makers to be used in determining where mitigation funds
may most effectively be allocated by providing the associated risk
with each retrofit plan. It was demonstrated that the retrofitted
solutions had a lower total financial loss than the unretrofitted
solutions, where total financial loss included the initial cost of
retrofitting. When considering the reduced number of morbidities
associated with the retrofitted solutions, retrofitting is clearly a bet-
ter solution.

There are many assumptions and approximations embedded
into the framework, which can lead to increasing uncertainty in the
estimated losses. With this in mind, the framework was calibrated
to meet several reported loss values for the 1994 Northridge earth-
quake, the most recent major earthquake disaster in the United
States. Several illustrative examples were conducted as applications
of the coupled socioeconomic and engineering framework for
optimizing community seismic resilience. Through the illustrative
examples, it was demonstrated that by not including socioeconomic
and demographic indicators, and considerations of social vulner-
ability into the loss estimations, large underestimations in losses
clearly result, and are exacerbated for a highly vulnerable popula-
tion. It was shown that when computing loss estimations for a less
resilient building stock, it is even more imperative to include com-
munity-specific SED variables into the loss estimations. In fact,
difference in predicted economic loss differed by millions, and bil-
lions, of dollars depending on the earthquake intensity. This was
consistent for all loss estimates, except recovery time for a very
intense earthquake because (1) the repair times were not modeled
using the SED variables; and (2) a limited number of examples
were presented, which did not demonstrate the difference in

recovery time due to morbidity. This clearly underscores the need
for more robust fully coupled models of community resilience.

Through applying the framework to the Los Angeles County
population, the work showed that extreme losses should be ex-
pected for the current woodframe building stock if a very large
earthquake were to occur (and it is worth noting that Los Angeles
is overdue for a very intense earthquake). For a maximum consid-
ered earthquake (e.g., 2,475 year return period, Sa ¼ 2.5g), eco-
nomic loss estimations exceeded $148 billion. This amount was
reduced to $47 billion for one of the retrofit plans investigated
in the illustrative examples, equating to $101 billion saved by retro-
fitting. For an earthquake of this intensity, the number of morbid-
ities was estimated at approximately 146,000 people under the
current woodframe building stock. This count was reduced to
41,700 persons for one of the retrofit plans investigated, equating
to over 104,000 people saved from being injured, killed or devel-
oping PTSD. The recovery time was reduced from 119 weeks to
78 weeks, nearly a year, by retrofitting. The aforementioned values
were taken at a 50% probability of nonexceedance with the com-
munity-specific SED variables included in the analysis.

For a design-basis earthquake (i.e., 475 year return period,
Sa ¼ 1.6g), the estimated economic loss and number of morbidities
for the current building stock in Los Angeles County was $56 bil-
lion and 35,200 persons, respectively. When the optimal retrofit
plan was implemented, these values were reduced to $13 billion
and 4,660 persons, respectively. That means that $43 billion could
be saved by retrofitting, and over 30,000 people could be saved
from injury, fatality, or PTSD given a design-level earthquake.
Moreover, the recovery time was reduced from 117 weeks to
52 weeks by retrofitting, over a year’s worth of time saved.

The loss values in both cases are still high, although they were
reduced by an order of magnitude for the MCE event, and reduced
by a factor of 4 or more for the DBE event. A greater reduction
could potentially be achieved if the input parameters to the genetic
algorithm were increased allowing for more solutions to be ex-
plored. Economic loss reports following the 1994 Northridge earth-
quake (Sa ¼ 1.1g) reached $49 billion. In this study, the initial
population for the focal community was estimated to incur $56 bil-
lion and $148 billion for a DBE event and MCE event, respectively.
Due to the increases in ground motion intensity, the number of
fatalities and the number of households required to relocate would
subsequently be much higher and, severely increasing the total
economic loss.

In the application presented above, the total financial loss
(e.g., initial cost + economic loss) was higher for the unretrofitted
case. When combining these financial savings with the reduced
number of morbidities, it is clear that the higher initial cost asso-
ciated with retrofitting the woodframe building stock greatly out-
weighs the risks and losses associated with not retrofitting. The
largest difference in total financial loss was demonstrated to occur
at a DBE seismic intensity. This finding should further encourage
retrofit since a DBE event is very likely to occur in Los Angeles
County.

An additional innovative feature of this work was the demon-
strated importance of including the emotional health of the popu-
lation for the community’s economy and recovery. The 50th
percentile values for the total number of work hours lost due to
employees having PTSD was estimated as 7,200 h for Los Angeles
County for a DBE seismic intensity. These hour estimates equated
to $74 million in financial loss for the commercial industry based
on the mean annual income. Considering these large estimated
losses for a design bases earthquake, it is clear that including
the mental health of the population is critical for recovery following
disastrous events such as earthquakes, and it is important for future

© ASCE 04016015-10 Nat. Hazards Rev.
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studies to take mental health measures such as PTSD morbidities
into account.

In conclusion, this work has demonstrated the importance of
coupling engineering and socioeconomic systems in community
resilience research. Moreover, it has built on prior work that has
shown the importance of retrofitting the existing building stock,
while it has advanced knowledge by considering new variables
such as morbidities with a specific emphasis on PTSD. Future in-
vestments should be made to ensure that this work is accessible to
practitioners through the development of a graphical user interface.
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